Systems of Linear Equations
A system of linear equations is said to be in row echelon form if its augmented matrix is in row echelon form. Similarly, a system of equations is said to be in reduced row echelon form or canonical form if its augmented matrix is in reduced row echelon form.
The canonical form may be viewed as an explicit solution of the linear system. In fact, the system is inconsistent, if and only if one of the equations of the canonical form is reduced to 1 = 0. Otherwise, regrouping in the right hand side all the terms of the equations, but the leading ones expresses the variables corresponding to the pivots as constants or linear functions of the other variables, if any.
Read more about this topic: Row Echelon Form
Famous quotes containing the words systems of and/or systems:
“Not out of those, on whom systems of education have exhausted their culture, comes the helpful giant to destroy the old or to build the new, but out of unhandselled savage nature, out of terrible Druids and Berserkirs, come at last Alfred and Shakespeare.”
—Ralph Waldo Emerson (18031882)
“The skylines lit up at dead of night, the air- conditioning systems cooling empty hotels in the desert and artificial light in the middle of the day all have something both demented and admirable about them. The mindless luxury of a rich civilization, and yet of a civilization perhaps as scared to see the lights go out as was the hunter in his primitive night.”
—Jean Baudrillard (b. 1929)