Rotational Version of Fick's Law
A rotational version of Fick's law of diffusion can be defined. Let each rotating molecule be associated with a vector n of unit length n·n=1; for example, n might represent the orientation of an electric or magnetic dipole moment. Let f(θ, φ, t) represent the probability density distribution for the orientation of n at time t. Here, θ and φ represent the spherical angles, with θ being the polar angle between n and the z-axis and φ being the azimuthal angle of n in the x-y plane. The rotational version of Fick's law states
This partial differential equation (PDE) may be solved by expanding f(θ, φ, t) in spherical harmonics for which the mathematical identity holds
Thus, the solution of the PDE may be written
where Clm are constants fitted to the initial distribution and the time constants equal
Read more about this topic: Rotational Diffusion
Famous quotes containing the words version and/or law:
“If the only new thing we have to offer is an improved version of the past, then today can only be inferior to yesterday. Hypnotised by images of the past, we risk losing all capacity for creative change.”
—Robert Hewison (b. 1943)
“You made us in the House of Pain. You made us things. Not men, not beasts, part-man, part-beast: things.”
—Waldemar Young, U.S. screenwriter. Erle C. Kenton. Sayer of the Law (Bela Lugosi)