Recovering The Embedding From The Rotation System
To recover a multigraph from a rotation system, we form a vertex for each orbit of σ, and an edge for each orbit of θ. A vertex is incident with an edge if these two orbits have a nonempty intersection. Thus, the number of incidences per vertex is the size of the orbit, and the number of incidences per edge is exactly two. If a rotation system is derived from a 2-cell embedding of a connected multigraph G, the graph derived from the rotation system is isomorphic to G.
To embed the graph derived from a rotation system onto a surface, form a disk for each orbit of σθ, and glue two disks together along an edge e whenever the two darts corresponding to e belong to the two orbits corresponding to these disks. The result is a 2-cell embedding of the derived multigraph, the two-cells of which are the disks corresponding to the orbits of σθ. The surface of this embedding can be oriented in such a way that the clockwise ordering of the edges around each vertex is the same as the clockwise ordering given by σ.
Read more about this topic: Rotation System
Famous quotes containing the words rotation and/or system:
“The lazy manage to keep up with the earths rotation just as well as the industrious.”
—Mason Cooley (b. 1927)
“We recognize caste in dogs because we rank ourselves by the familiar dog system, a ladderlike social arrangement wherein one individual outranks all others, the next outranks all but the first, and so on down the hierarchy. But the cat system is more like a wheel, with a high-ranking cat at the hub and the others arranged around the rim, all reluctantly acknowledging the superiority of the despot but not necessarily measuring themselves against one another.”
—Elizabeth Marshall Thomas. Strong and Sensitive Cats, Atlantic Monthly (July 1994)