Rotation Operator (quantum Mechanics) - in Relation To The Orbital Angular Momentum

In Relation To The Orbital Angular Momentum

Classically we have for the angular momentum . This is the same in quantum mechanics considering and as operators. Classically, an infinitesimal rotation of the vector r=(x,y,z) about the z-axis to r'=(x',y',z) leaving z unchanged can be expressed by the following infinitesimal translations (using Taylor approximation):

From that follows for states:

And consequently:

Using from above with and Taylor development we get:

with lz = x py - y px the z-component of the angular momentum according to the classical cross product.

To get a rotation for the angle, we construct the following differential equation using the condition :

Similar to the translation operator, if we are given a Hamiltonian which rotationally symmetric about the z axis, implies . This result means that angular momentum is conserved.

For the spin angular momentum about the y-axis we just replace with and we get the spin rotation operator .

Read more about this topic:  Rotation Operator (quantum Mechanics)

Famous quotes containing the word relation:

    Much poetry seems to be aware of its situation in time and of its relation to the metronome, the clock, and the calendar. ... The season or month is there to be felt; the day is there to be seized. Poems beginning “When” are much more numerous than those beginning “Where” of “If.” As the meter is running, the recurrent message tapped out by the passing of measured time is mortality.
    William Harmon (b. 1938)