Rotation Matrix - in Two Dimensions

In Two Dimensions

In two dimensions every rotation matrix has the following form:


R(\theta) = \begin{bmatrix}
\cos \theta & -\sin \theta \\
\sin \theta & \cos \theta \\
\end{bmatrix}.

This rotates column vectors by means of the following matrix multiplication:


\begin{bmatrix}
x' \\
y' \\
\end{bmatrix} = \begin{bmatrix}
\cos \theta & -\sin \theta \\
\sin \theta & \cos \theta \\
\end{bmatrix}\begin{bmatrix}
x \\
y \\
\end{bmatrix}.

So the coordinates (x',y') of the point (x,y) after rotation are:

,
.

The direction of vector rotation is counterclockwise if θ is positive (e.g. 90°), and clockwise if θ is negative (e.g. -90°).


R(-\theta) = \begin{bmatrix}
\cos \theta & \sin \theta \\
-\sin \theta & \cos \theta \\
\end{bmatrix}\,.

Note that the two-dimensional case is the only non-trivial (e.g. one dimension) case where the rotation matrices group is commutative, so that it does not matter the order in which multiple rotations are performed.

Read more about this topic:  Rotation Matrix

Famous quotes containing the word dimensions:

    Why is it that many contemporary male thinkers, especially men of color, repudiate the imperialist legacy of Columbus but affirm dimensions of that legacy by their refusal to repudiate patriarchy?
    bell hooks (b. c. 1955)