Rotation Group SO(3) - Group Structure

Group Structure

The rotation group is a group under function composition (or equivalently the product of linear transformations). It is a subgroup of the general linear group consisting of all invertible linear transformations of Euclidean space.

Furthermore, the rotation group is nonabelian. That is, the order in which rotations are composed makes a difference. For example, a quarter turn around the positive x-axis followed by a quarter turn around the positive y-axis is a different rotation than the one obtained by first rotating around y and then x.

The orthogonal group, consisting of all proper and improper rotations, is generated by reflections. Every proper rotation is the composition of two reflections, a special case of the Cartan–Dieudonné theorem.

Read more about this topic:  Rotation Group SO(3)

Famous quotes containing the words group and/or structure:

    The trouble with tea is that originally it was quite a good drink. So a group of the most eminent British scientists put their heads together, and made complicated biological experiments to find a way of spoiling it. To the eternal glory of British science their labour bore fruit.
    George Mikes (b. 1912)

    A special feature of the structure of our book is the monstrous but perfectly organic part that eavesdropping plays in it.
    Vladimir Nabokov (1899–1977)