Rolle's Theorem - Generalization To Higher Derivatives

Generalization To Higher Derivatives

We can also generalize Rolle's theorem by requiring that f has more points with equal values and greater regularity. Specifically, suppose that

  • the function f is n − 1 times continuously differentiable on the closed interval and the nth derivative exists on the open interval (a,b), and
  • there are n intervals given by a1 < b1a2 < b2 ≤ . . .≤ an < bn in such that f(ak) = f(bk) for every k from 1 to n.

Then there is a number c in (a,b) such that the nth derivative of f at c is zero.

Of course, the requirements concerning the nth derivative of f can be weakened as in the generalization above, giving the corresponding (possibly weaker) assertions for the right- and left-hand limits defined above with f (n−1) in place of f.

Read more about this topic:  Rolle's Theorem

Famous quotes containing the word higher:

    I never feel so conscious of my race as I do when I stand before a class of twenty-five young men and women eager to learn about what it is to be black in America.
    Claire Oberon Garcia, African American college professor. As quoted in the Chronicle of Higher Education, p. B3 (July 27, 1994)