Rogue Wave - Causes

Causes

Because the phenomenon of rogue waves is still a matter of active research, it is premature to state clearly what the most common causes are or whether they vary from place to place. The areas of highest predictable risk appear to be where a strong current runs counter to the primary direction of travel of the waves; the area near Cape Agulhas off the southern tip of Africa is one such area; the warm Agulhas current runs to the southwest, while the dominant winds are westerlies. However, since this thesis does not explain the existence of all waves that have been detected, several different mechanisms are likely, with localised variation. Suggested mechanisms for freak waves include the following:

  • Diffractive focusing — According to this hypothesis, coast shape or seabed shape directs several small waves to meet in phase. Their crest heights combine to create a freak wave.
  • Focusing by currents — Waves from one current are driven into an opposing current. This results in shortening of wavelength, causing shoaling (i.e., increase in wave height), and oncoming wave trains to compress together into a rogue wave. This happens off the South African coast, where the Agulhas current is countered by westerlies.
  • Nonlinear effects (modulational instability) — It seems possible to have a rogue wave occur by natural, nonlinear processes from a random background of smaller waves. In such a case, it is hypothesised, an unusual, unstable wave type may form which 'sucks' energy from other waves, growing to a near-vertical monster itself, before becoming too unstable and collapsing shortly after. One simple model for this is a wave equation known as the nonlinear Schrödinger equation (NLS), in which a normal and perfectly accountable (by the standard linear model) wave begins to 'soak' energy from the waves immediately fore and aft, reducing them to minor ripples compared to other waves. The NLS can be used in deep water conditions. In shallow water, waves are described by the Korteweg–de Vries equation or the Boussinesq equation. These equations also have non-linear contributions and show solitary-wave solutions. A rogue wave consistent with the nonlinear Schrödinger equation was produced in a laboratory water tank in 2011.
  • Normal part of the wave spectrum — Rogue waves are not freaks at all but are part of normal wave generation process, albeit a rare extremity.
  • Wind waves — While it is unlikely that wind alone can generate a rogue wave, its effect combined with other mechanisms may provide a fuller explanation of freak wave phenomena. As wind blows over the ocean, energy is transferred to the sea surface. When strong winds from a storm happen to blow in the opposing direction of the ocean current the forces might be strong enough to randomly generate rogue waves. Theories of instability mechanisms for the generation and growth of wind waves—although not on the causes of rogue waves—are provided by Phillips and Miles.

The spatio-temporal focusing seen in the NLS equation can also occur when the nonlinearity is removed. In this case, focusing is primarily due to different waves coming into phase, rather than any energy transfer processes. Further analysis of rogue waves using a fully nonlinear model by R.H. Gibbs (2005) brings this mode into question, as it is shown that a typical wavegroup focuses in such a way as to produce a significant wall of water, at the cost of a reduced height.

A rogue wave, and the deep trough commonly seen before and after it, may last only for some minutes before either breaking, or reducing in size again. Apart from one single rogue wave, the rogue wave may be part of a wave packet consisting of a few rogue waves. Such rogue wave groups have been observed in nature.

There are three categories of freak waves:

  • "Walls of water" travelling up to 10 km (6.2 mi) through the ocean
  • "Three Sisters", groups of three waves
  • Single, giant storm waves, building up to fourfold the storm's waves height and collapsing after some seconds

A research group at the Umeå University, Sweden in August 2006 showed that normal stochastic wind driven waves can suddenly give rise to monster waves. The nonlinear evolution of the instabilities was investigated by means of direct simulations of the time-dependent system of nonlinear equations.

Read more about this topic:  Rogue Wave