Definition
The formalization of computability theory by Kleene led to a particular universal partial computable function Ψ(e, x) defined using the T predicate. This function is universal in the sense that it is partial computable, and for any partial computable function f there is an e such that, for all x, f(x) = Ψ(e,x), where the equality means that either both sides are undefined or both are defined and are equal. It is common to write ψe(x) for Ψ(e,x); thus the sequence ψ0, ψ1, ... is an enumeration of all partial computable functions. Such enumerations are formally called computable numberings of the partial computable functions.
An arbitrary numbering η of partial functions is defined to be an admissible numbering if:
- The function H(e,x) = ηe(x) is a partial computable function.
- There is a total computable function f such that, for all e, ηe = ψf(e).
- There is a total computable function g such that, for all e, ψe = ηg(e).
Here, the first bullet requires the numbering to be computable; the second requires that any index for the numbering η can be converted effectively to an index to the numbering ψ; and the third requires that any index for the numbering ψ can be effectively converted to an index for the numbering η.
Read more about this topic: Rogers' Equivalence Theorem
Famous quotes containing the word definition:
“One definition of man is an intelligence served by organs.”
—Ralph Waldo Emerson (18031882)
“Im beginning to think that the proper definition of Man is an animal that writes letters.”
—Lewis Carroll [Charles Lutwidge Dodgson] (18321898)
“... we all know the wags definition of a philanthropist: a man whose charity increases directly as the square of the distance.”
—George Eliot [Mary Ann (or Marian)