Robust Statistics - Definition

Definition

There are various definitions of a "robust statistic". Strictly speaking, a robust statistic is resistant to errors in the results, produced by deviations from assumptions (e.g. of normality). This means that if the assumptions are only approximately met, the robust estimator will still have a reasonable efficiency, and reasonably small bias, as well as being asymptotically unbiased, meaning having a bias tending towards 0 as the sample size tends towards infinity.

One of the most important cases is distributional robustness. Classical statistical procedures are typically sensitive to "longtailedness" (e.g., when the distribution of the data has longer tails than the assumed normal distribution). Thus, in the context of robust statistics, distributionally robust and outlier-resistant are effectively synonymous. For one perspective on research in robust statistics up to 2000, see Portnoy and He (2000).

A related topic is that of resistant statistics, which are resistant to the effect of extreme scores.

Read more about this topic:  Robust Statistics

Famous quotes containing the word definition:

    The physicians say, they are not materialists; but they are:MSpirit is matter reduced to an extreme thinness: O so thin!—But the definition of spiritual should be, that which is its own evidence. What notions do they attach to love! what to religion! One would not willingly pronounce these words in their hearing, and give them the occasion to profane them.
    Ralph Waldo Emerson (1803–1882)

    Was man made stupid to see his own stupidity?
    Is God by definition indifferent, beyond us all?
    Is the eternal truth man’s fighting soul
    Wherein the Beast ravens in its own avidity?
    Richard Eberhart (b. 1904)

    The very definition of the real becomes: that of which it is possible to give an equivalent reproduction.... The real is not only what can be reproduced, but that which is always already reproduced. The hyperreal.
    Jean Baudrillard (b. 1929)