Definition
Formally, a ringed space (X, OX) is a topological space X together with a sheaf of rings OX on X. The sheaf OX is called the structure sheaf of X.
A locally ringed space is a ringed space (X, OX) such that all stalks of OX are local rings (i.e. they have unique maximal ideals). Note that it is not required that OX(U) be a local ring for every open set U. In fact, that is almost never going to be the case.
Read more about this topic: Ringed Space
Famous quotes containing the word definition:
“... if, as women, we accept a philosophy of history that asserts that women are by definition assimilated into the male universal, that we can understand our past through a male lensif we are unaware that women even have a historywe live our lives similarly unanchored, drifting in response to a veering wind of myth and bias.”
—Adrienne Rich (b. 1929)
“Mothers often are too easily intimidated by their childrens negative reactions...When the child cries or is unhappy, the mother reads this as meaning that she is a failure. This is why it is so important for a mother to know...that the process of growing up involves by definition things that her child is not going to like. Her job is not to create a bed of roses, but to help him learn how to pick his way through the thorns.”
—Elaine Heffner (20th century)
“No man, not even a doctor, ever gives any other definition of what a nurse should be than thisdevoted and obedient. This definition would do just as well for a porter. It might even do for a horse. It would not do for a policeman.”
—Florence Nightingale (18201910)