Rigidity (mathematics)

In mathematics, a rigid collection C of mathematical objects (for instance sets or functions) is one in which every cC is uniquely determined by less information about c than one would expect.

The above statement does not define a mathematical property. Instead, it describes in what sense the adjective rigid is typically used in mathematics, by mathematicians.

Some examples include:

  1. Harmonic functions on the unit disk are rigid in the sense that they are uniquely determined by their boundary values.
  2. Holomorphic functions are determined by the set of all derivatives at a single point. A smooth function from the real line to the complex plane is not, in general, determined by all its derivatives at a single point, but it is if we require additionally that it be possible to extend the function to one on a neighbourhood of the real line in the complex plane. The Schwarz lemma is an example of such a rigidity theorem.
  3. By the fundamental theorem of algebra, polynomials in C are rigid in the sense that any polynomial is completely determined by its values on any infinite set, say N, or the unit disk. Note that by the previous example, a polynomial is also determined within the set of holomorphic functions by the finite set of its non-zero derivatives at any single point.
  4. Linear maps L(X, Y) between vector spaces X, Y are rigid in the sense that any LL(X, Y) is completely determined by its values on any set of basis vectors of X.
  5. Mostow's rigidity theorem, which states that negatively curved manifolds are isomorphic if some rather weak conditions on them hold.
  6. A well-ordered set is rigid in the sense that the only (order-preserving) automorphism on it is the identity function. Consequently, an isomorphism between two given well-ordered sets will be unique.
  7. Cauchy's theorem on geometry of convex polytopes states that a convex polytope is uniquely determined by the geometry of its faces and combinatorial adjacency rules.

Famous quotes containing the word rigidity:

    [University students] hated the hypocrisy of adult society, the rigidity of its political institutions, the impersonality of its bureaucracies. They sought to create a society that places human values before materialistic ones, that has a little less head and a little more heart, that is dominated by self-interest and loves its neighbor more. And they were persuaded that group protest of a militant nature would advance those goals.
    Muriel Beadle (b. 1915)