In mathematics, a rigid collection C of mathematical objects (for instance sets or functions) is one in which every c ∈ C is uniquely determined by less information about c than one would expect.
The above statement does not define a mathematical property. Instead, it describes in what sense the adjective rigid is typically used in mathematics, by mathematicians.
Some examples include:
- Harmonic functions on the unit disk are rigid in the sense that they are uniquely determined by their boundary values.
- Holomorphic functions are determined by the set of all derivatives at a single point. A smooth function from the real line to the complex plane is not, in general, determined by all its derivatives at a single point, but it is if we require additionally that it be possible to extend the function to one on a neighbourhood of the real line in the complex plane. The Schwarz lemma is an example of such a rigidity theorem.
- By the fundamental theorem of algebra, polynomials in C are rigid in the sense that any polynomial is completely determined by its values on any infinite set, say N, or the unit disk. Note that by the previous example, a polynomial is also determined within the set of holomorphic functions by the finite set of its non-zero derivatives at any single point.
- Linear maps L(X, Y) between vector spaces X, Y are rigid in the sense that any L ∈ L(X, Y) is completely determined by its values on any set of basis vectors of X.
- Mostow's rigidity theorem, which states that negatively curved manifolds are isomorphic if some rather weak conditions on them hold.
- A well-ordered set is rigid in the sense that the only (order-preserving) automorphism on it is the identity function. Consequently, an isomorphism between two given well-ordered sets will be unique.
- Cauchy's theorem on geometry of convex polytopes states that a convex polytope is uniquely determined by the geometry of its faces and combinatorial adjacency rules.
Famous quotes containing the word rigidity:
“[University students] hated the hypocrisy of adult society, the rigidity of its political institutions, the impersonality of its bureaucracies. They sought to create a society that places human values before materialistic ones, that has a little less head and a little more heart, that is dominated by self-interest and loves its neighbor more. And they were persuaded that group protest of a militant nature would advance those goals.”
—Muriel Beadle (b. 1915)