Riemann's Differential Equation - Fractional Linear Transformations

Fractional Linear Transformations

The P-function possesses a simple symmetry under the action of fractional linear transformations, that is, under the action of the group GL(2, C), or equivalently, under the conformal remappings of the Riemann sphere. Given arbitrary complex numbers A, B, C, D such that ADBC ≠ 0, define the quantities

u=\frac{Az+B}{Cz+D}
\quad \text{ and } \quad
\eta=\frac{Aa+B}{Ca+D}

and

\zeta=\frac{Ab+B}{Cb+D}
\quad \text{ and } \quad
\theta=\frac{Ac+B}{Cc+D}

then one has the simple relation

P \left\{ \begin{matrix} a & b & c & \; \\
\alpha & \beta & \gamma & z \\
\alpha' & \beta' & \gamma' & \;
\end{matrix} \right\}
=P \left\{ \begin{matrix}
\eta & \zeta & \theta & \; \\
\alpha & \beta & \gamma & u \\
\alpha' & \beta' & \gamma' & \;
\end{matrix} \right\}

expressing the symmetry.

Read more about this topic:  Riemann's Differential Equation

Famous quotes containing the word fractional:

    Hummingbird
    stay for a fractional sharp
    sweetness, and’s gone, can’t take
    more than that.
    Denise Levertov (b. 1923)