As The Complex Projective Line
The Riemann sphere can also be defined as the complex projective line. This is the subset of C2 consisting of all pairs (α, β) of complex numbers, not both zero, modulo the equivalence relation
for all nonzero complex numbers λ. The complex plane C, with coordinate ζ, can be mapped into the complex projective line by
Another copy of C with coordinate ξ can be mapped in by
These two complex charts cover the projective line. For nonzero ξ the identifications
demonstrate that the transition maps are ζ = 1/ξ and ξ = 1/ζ, as above.
This treatment of the Riemann sphere connects most readily to projective geometry. For example, any line (or smooth conic) in the complex projective plane is biholomorphic to the complex projective line. It is also convenient for studying the sphere's automorphisms, later in this article.
Read more about this topic: Riemann Sphere
Famous quotes containing the words complex and/or line:
“I have met charming people, lots who would be charming if they hadnt got a complex about the British and everyone has pleasant and cheerful manners and I like most of the American voices. On the other hand I dont believe they have any God and their hats are frightful. On balance I prefer the Arabs.”
—Freya Stark (18931993)
“Theres a line between love and fascination thats hard to see on an evening such as this.”
—Ned Washington (19011976)