Ricci Curvature - Definition

Definition

Suppose that is an n-dimensional Riemannian manifold, equipped with its Levi-Civita connection . The Riemannian curvature tensor of is the tensor defined by

on vector fields . Let denote the tangent space of M at a point p. For any pair of tangent vectors at p, the Ricci tensor evaluated at is defined to be the trace of the linear map given by

In local coordinates (using the Einstein summation convention), one has

where

In terms of the Riemann curvature tensor and the Christoffel symbols, one has


R_{\alpha\beta} = {R^\rho}_{\alpha\rho\beta} =
\partial_{\rho}{\Gamma^\rho_{\beta\alpha}} - \partial_{\beta}\Gamma^\rho_{\rho\alpha}
+ \Gamma^\rho_{\rho\lambda} \Gamma^\lambda_{\beta\alpha}
- \Gamma^\rho_{\beta\lambda}\Gamma^\lambda_{\rho\alpha}
=2 \Gamma^{\rho}_{{\alpha}} +
2 \Gamma^\rho_{\lambda \alpha}
.

Read more about this topic:  Ricci Curvature

Famous quotes containing the word definition:

    No man, not even a doctor, ever gives any other definition of what a nurse should be than this—”devoted and obedient.” This definition would do just as well for a porter. It might even do for a horse. It would not do for a policeman.
    Florence Nightingale (1820–1910)

    According to our social pyramid, all men who feel displaced racially, culturally, and/or because of economic hardships will turn on those whom they feel they can order and humiliate, usually women, children, and animals—just as they have been ordered and humiliated by those privileged few who are in power. However, this definition does not explain why there are privileged men who behave this way toward women.
    Ana Castillo (b. 1953)

    It is very hard to give a just definition of love. The most we can say of it is this: that in the soul, it is a desire to rule; in the spirit, it is a sympathy; and in the body, it is but a hidden and subtle desire to possess—after many mysteries—what one loves.
    François, Duc De La Rochefoucauld (1613–1680)