Rhind Mathematical Papyrus 2/n Table

Rhind Mathematical Papyrus 2/n Table

The Rhind Mathematical Papyrus contains, among other mathematical contents, a table of Egyptian fractions created from 2/n. The text reports 51 rational numbers converted to concise unit fraction series. The document was written in 1650 BCE by Ahmes. Aspects of the document may have been copied from an unknown 1850 BCE text.

The following table expresses 2/n (for odd n less than or equal to 101) in terms of sums of unit fractions, an introduction to scribal conversions of rational numbers to concise unit fraction series. In the Rhind Mathematical Papyrus the unit fraction decomposition was spread over 9 sheets of papyrus. Red ink was used regularly to highlight important values and procedures in the computations; the numbers included in the computations written in red ink were known as red auxiliary numbers.

The 2/n table from the Rhind Mathematical Papyrus
2/3 = 1/2 + 1/6 2/5 = 1/3 + 1/15 2/7 = 1/4 + 1/28
2/9 = 1/6 + 1/18 2/11 = 1/6 + 1/66 2/13 = 1/8 + 1/52 + 1/104
2/15 = 1/10 + 1/30 2/17 = 1/12 + 1/51 + 1/68 2/19 = 1/12 + 1/76 + 1/114
2/21= 1/14 + 1/42 2/23 = 1/12 + 1/276 2/25 = 1/15 + 1/75
2/27 = 1/18 + 1/54 2/29 = 1/24 + 1/58 + 1/174 + 1/232 2/31 = 1/20 + 1/124 + 1/155
2/33 = 1/22 + 1/66 2/35 = 1/30 + 1/42 2/37 = 1/24 + 1/111 + 1/296
2/39 = 1/26 + 1/78 2/41 = 1/24 + 1/246 + 1/328 2/43 = 1/42 + 1/86 + 1/129 + 1/301
2/45 = 1/30 + 1/90 2/47 = 1/30 + 1/141 + 1/470 2/49 = 1/28 + 1/196
2/51 = 1/34 + 1/102 2/53 = 1/30 + 1/318 + 1/795 2/55 = 1/30 + 1/330
2/57 = 1/38 + 1/114 2/59 = 1/36 + 1/236 + 1/531 2/61 = 1/40 + 1/244 + 1/488 + 1/610
2/63 = 1/42 + 1/126 2/65 = 1/39 + 1/195 2/67 = 1/40 + 1/335 + 1/536
2/69 = 1/46 + 1/138 2/71 = 1/40 + 1/568 + 1/710 2/73 = 1/60 + 1/219 + 1/292 + 1/365
2/75 = 1/50 + 1/150 2/77 = 1/44 + 1/308 2/79 = 1/60 + 1/237 + 1/316 + 1/790
2/81 = 1/54 + 1/162 2/83 = 1/60 + 1/332 + 1/415 + 1/498 2/85 = 1/51 + 1/255
2/87 = 1/58 + 1/174 2/89 = 1/60 + 1/356 + 1/534 + 1/890 2/91 = 1/70 + 1/130
2/93 = 1/62 + 1/186 2/95 = 1/60 + 1/380 + 1/570 2/97 = 1/56 + 1/679 + 1/776
2/99 = 1/66 + 1/198 2/101 = 1/101 + 1/202 + 1/303 + 1/606

Proposed explanations for the way that rational numbers were converted to concise unit fraction decompositions have varied since 1895. Suggestions by Gillings included five different techniques. Problem 61 in the Rhind Mathematical Papyrus gives one formula: which can be stated equivalently as (n divisible by 3 in the latter equation) Other possible formulas are:

(n divisible by 5)
(where k is the average of m and n)
This formula yields the decomposition for n = 101 in the table.

Ahmes was suggested to have converted 2/p (where p was a prime number) by two methods, and three methods to convert 2/pq composite denominators. Others have suggested only one method was used by Ahmes which used multiplicative factors similar to least common multiples.

Read more about Rhind Mathematical Papyrus 2/n Table:  Comparison To Other Table Texts

Famous quotes containing the words mathematical, papyrus and/or table:

    All science requires mathematics. The knowledge of mathematical things is almost innate in us.... This is the easiest of sciences, a fact which is obvious in that no one’s brain rejects it; for laymen and people who are utterly illiterate know how to count and reckon.
    Roger Bacon (c. 1214–c. 1294)

    When she could hide him no longer she got a papyrus basket for him, and plastered it with bitumen and pitch; she put the child in it and placed it among the reeds on the bank of the river.
    Bible: Hebrew, Exodus 2:3.

    the moderate Aristotelian city
    Of darning and the Eight-Fifteen, where Euclid’s geometry
    And Newton’s mechanics would account for our experience,
    And the kitchen table exists because I scrub it.
    —W.H. (Wystan Hugh)