Calibration
To characterize the R vs T relationship of any RTD over a temperature range that represents the planned range of use, calibration must be performed at temperatures other than 0°C and 100°C. Two common calibration methods are the fixed point method and the comparison method.
- Fixed point calibration, used for the highest accuracy calibrations, uses the triple point, freezing point or melting point of pure substances such as water, zinc, tin, and argon to generate a known and repeatable temperature. These cells allow the user to reproduce actual conditions of the ITS-90 temperature scale. Fixed point calibrations provide extremely accurate calibrations (within ±0.001°C) A common fixed point calibration method for industrial-grade probes is the ice bath. The equipment is inexpensive, easy to use, and can accommodate several sensors at once. The ice point is designated as a secondary standard because its accuracy is ±0.005°C (±0.009°F), compared to ±0.001°C (±0.0018°F) for primary fixed points.
- Comparison calibrations, commonly used with secondary SPRTs and industrial RTDs, the thermometers being calibrated are compared to calibrated thermometers by means of a bath whose temperature is uniformly stable Unlike fixed point calibrations, comparisons can be made at any temperature between –100°C and 500°C (–148°F to 932°F). This method might be more cost-effective since several sensors can be calibrated simultaneously with automated equipment. These, electrically heated and well-stirred baths, use silicone oils and molten salts as the medium for the various calibration temperatures.
Read more about this topic: Resistance Thermometer