Residue Field - Definition

Definition

Suppose that R is a commutative local ring, with the maximal ideal m. Then the residue field is the quotient ring R/m.

Now suppose that X is a scheme and x is a point of X. By the definition of scheme, we may find an affine neighbourhood U = Spec(A), with A some commutative ring. Considered in the neighbourhood U, the point x corresponds to a prime ideal pA (see Zariski topology). The local ring of X in x is by definition the localization R = Ap, with the maximal ideal m = p·Ap. Applying the construction above, we obtain the residue field of the point x :

k(x) := Ap / p·Ap.

One can prove that this definition does not depend on the choice of the affine neighbourhood U.

A point is called K-rational for a certain field K, if k(x) ⊂ K.

Read more about this topic:  Residue Field

Famous quotes containing the word definition:

    ... we all know the wag’s definition of a philanthropist: a man whose charity increases directly as the square of the distance.
    George Eliot [Mary Ann (or Marian)

    The man who knows governments most completely is he who troubles himself least about a definition which shall give their essence. Enjoying an intimate acquaintance with all their particularities in turn, he would naturally regard an abstract conception in which these were unified as a thing more misleading than enlightening.
    William James (1842–1910)

    No man, not even a doctor, ever gives any other definition of what a nurse should be than this—”devoted and obedient.” This definition would do just as well for a porter. It might even do for a horse. It would not do for a policeman.
    Florence Nightingale (1820–1910)