Definition
Suppose that R is a commutative local ring, with the maximal ideal m. Then the residue field is the quotient ring R/m.
Now suppose that X is a scheme and x is a point of X. By the definition of scheme, we may find an affine neighbourhood U = Spec(A), with A some commutative ring. Considered in the neighbourhood U, the point x corresponds to a prime ideal p ⊂ A (see Zariski topology). The local ring of X in x is by definition the localization R = Ap, with the maximal ideal m = p·Ap. Applying the construction above, we obtain the residue field of the point x :
- k(x) := Ap / p·Ap.
One can prove that this definition does not depend on the choice of the affine neighbourhood U.
A point is called K-rational for a certain field K, if k(x) ⊂ K.
Read more about this topic: Residue Field
Famous quotes containing the word definition:
“Im beginning to think that the proper definition of Man is an animal that writes letters.”
—Lewis Carroll [Charles Lutwidge Dodgson] (18321898)
“Scientific method is the way to truth, but it affords, even in
principle, no unique definition of truth. Any so-called pragmatic
definition of truth is doomed to failure equally.”
—Willard Van Orman Quine (b. 1908)
“Perhaps the best definition of progress would be the continuing efforts of men and women to narrow the gap between the convenience of the powers that be and the unwritten charter.”
—Nadine Gordimer (b. 1923)