Comparison of Bootstrap and Jackknife
Both methods, the bootstrap and the jackknife, estimate the variability of a statistic from the variability of that statistic between subsamples, rather than from parametric assumptions. For the more general jackknife, the delete-m observations jackknife, the bootstrap can be seen as a random approximation of it. Both yield similar numerical results, which is why each can be seen as approximation to the other. Although there are huge theoretical differences in their mathematical insights, the main practical difference for statistics users is that the bootstrap gives different results when repeated on the same data, whereas the jackknife gives exactly the same result each time. Because of this, the jackknife is popular when the estimates need to be verified several times before publishing (e.g. official statistics agencies). On the other hand, when this verification feature is not crucial and it is of interest not to have a number but just an idea of its distribution the bootstrap is preferred (e.g. studies in physics, economics, biological sciences).
Whether to use the bootstrap or the jackknife may depend more on operational aspects than on statistical concerns of a survey. The jackknife, originally used for bias reduction, is more of a specialized method and only estimates the variance of the point estimator. This can be enough for basic statistical inference (e.g. hypothesis testing, confidence intervals). The bootstrap, on the other hand, first estimates the whole distribution (of the point estimator) and then computes the variance from that. While powerful and easy, this can become highly computer intensive.
"The bootstrap can be applied to both variance and distribution estimation problems. However, the bootstrap variance estimator is not as good as the jackknife or the balanced repeated replication (BRR) variance estimator in terms of the empirical results. Furthermore, the bootstrap variance estimator usually requires more computations than the jackknife or the BRR . Thus, the bootstrap is mainly recommended for distribution estimation."
There is a special consideration with the jackknife, particularly with the delete-1 observation jackknife. It should only be used with smooth differentiable statistics, that is: totals, means, proportions, ratios, odd ratios, regression coefficients, etc.; but not with medians or quantiles. This clearly may become a practical disadvantage (or not, depending on the needs of the user). This disadvantage is usually the argument against the jackknife in benefit to the bootstrap. More general jackknifes than the delete-1, such as the delete-m jackknife, overcome this problem for the medians and quantiles by relaxing the smoothness requirements for consistent variance estimation.
Usually the jackknife is easier to apply to complex sampling schemes than the bootstrap. Complex sampling schemes may involve stratification, multi-stages (clustering), varying sampling weights (non-response adjustments, calibration, post-stratification) and under unequal-probability sampling designs. Theoretical aspects of both the bootstrap and the jackknife can be found in Shao and Tu (1995), whereas a basic introduction is accounted in Wolter (2007).
Read more about this topic: Resampling (statistics)
Famous quotes containing the words comparison and/or jackknife:
“The comparison between Coleridge and Johnson is obvious in so far as each held sway chiefly by the power of his tongue. The difference between their methods is so marked that it is tempting, but also unnecessary, to judge one to be inferior to the other. Johnson was robust, combative, and concrete; Coleridge was the opposite. The contrast was perhaps in his mind when he said of Johnson: his bow-wow manner must have had a good deal to do with the effect produced.”
—Virginia Woolf (18821941)
“Oh, the shark has pretty teeth, dear
And he shows them pearly white
Just a jackknife has Macheath, dear
And he keeps it out of sight.”
—Bertolt Brecht (18981956)