Representable Functor - Universal Elements

Universal Elements

According to Yoneda's lemma, natural transformations from Hom(A,–) to F are in one-to-one correspondence with the elements of F(A). Given a natural transformation Φ : Hom(A,–) → F the corresponding element uF(A) is given by

Conversely, given any element uF(A) we may define a natural transformation Φ : Hom(A,–) → F via

where f is an element of Hom(A,X). In order to get a representation of F we want to know when the natural transformation induced by u is an isomorphism. This leads to the following definition:

A universal element of a functor F : CSet is a pair (A,u) consisting of an object A of C and an element uF(A) such that for every pair (X,v) with vF(X) there exists a unique morphism f : AX such that (Ff)u = v.

A universal element may be viewed as a universal morphism from the one-point set {•} to the functor F or as an initial object in the category of elements of F.

The natural transformation induced by an element uF(A) is an isomorphism if and only if (A,u) is a universal element of F. We therefore conclude that representations of F are in one-to-one correspondence with universal elements of F. For this reason, it is common to refer to universal elements (A,u) as representations.

Read more about this topic:  Representable Functor

Famous quotes containing the words universal and/or elements:

    I believe there’s no proverb but what is true; they are all so many sentences and maxims drawn from experience, the universal mother of sciences.
    Miguel De Cervantes (1547–1616)

    English general and singular terms, identity, quantification, and the whole bag of ontological tricks may be correlated with elements of the native language in any of various mutually incompatible ways, each compatible with all possible linguistic data, and none preferable to another save as favored by a rationalization of the native language that is simple and natural to us.
    Willard Van Orman Quine (b. 1908)