Relative Humidity - Other Important Facts

Other Important Facts

A gas in this context is referred to as saturated when the vapor pressure of water in the air is at the equilibrium vapor pressure for water vapor at the temperature of the gas and water vapor mixture; liquid water (and ice, at the appropriate temperature) will fail to lose mass through evaporation when exposed to saturated air. It may also correspond to the possibility of dew or fog forming, within a space that lacks temperature differences among its portions, for instance in response to decreasing temperature. Fog consists of very minute droplets of liquid, primarily held aloft by isostatic motion (in other words, the droplets fall through the air at terminal velocity, but as they are very small, this terminal velocity is very small too, so it doesn't look to us like they are falling, and they seem to be held aloft).

The statement that relative humidity (RH%) can never be above 100%, while a fairly good guide, is not absolutely accurate, without a more sophisticated definition of humidity than the one given here. An arguable exception is the Wilson cloud chamber, which uses, in nuclear physics experiments, an extremely brief state of "supersaturation" to accomplish its function.

For a given dewpoint and its corresponding absolute humidity, the relative humidity will change inversely, albeit nonlinearly, with the temperature. This is because the partial pressure of water increases with temperature – the operative principle behind everything from hair dryers to dehumidifiers.

Due to the increasing potential for a higher water vapor partial pressure at higher air temperatures, the water content of air at sea level can get as high as 3% by mass at 30 °C (86 °F) compared to no more than about 0.5% by mass at 0 °C (32 °F). This explains the low levels (in the absence of measures to add moisture) of humidity in heated structures during winter, resulting in dry skin, itchy eyes, and persistence of static electric charges. Even with saturation (100% relative humidity) outdoors, heating of infiltrated outside air that comes indoors raises its moisture capacity, which lowers relative humidity and increases evaporation rates from moist surfaces indoors (including human bodies and household plants.)

Similarly, during summer in humid climates a great deal of liquid water condenses from air cooled in air conditioners. Warmer air is cooled below its dewpoint, and the excess water vapor condenses. This phenomenon is the same as that which causes water droplets to form on the outside of a cup containing an ice-cold drink.

A useful rule of thumb is that the maximum absolute humidity doubles for every 20 °F or 10 °C increase in temperature. Thus, the relative humidity will drop by a factor of 2 for each 20 °F or 10 °C increase in temperature, assuming conservation of absolute moisture. For example, in the range of normal temperatures, air at 68 °F or 20 °C and 50% relative humidity will become saturated if cooled to 50°F or 10 °C, its dewpoint, and 41 °F or 5 °C air at 80% relative humidity warmed to 68 °F or 20 °C will have a relative humidity of only 29% and feel dry. By comparison, a relative humidity between 40% and 60% is considered healthy and comfortable in comfort-controlled environments (ASHRAE Standard 55 - see thermal comfort).

Water vapor is a lighter gas than other gaseous components of air at the same temperature, so humid air will tend to rise by natural convection. This is a mechanism behind thunderstorms and other weather phenomena. Relative humidity is often mentioned in weather forecasts and reports, as it is an indicator of the likelihood of precipitation, dew, or fog. In hot summer weather, it also increases the apparent temperature to humans (and other animals) by hindering the evaporation of perspiration from the skin as the relative humidity rises. This effect is calculated as the heat index or humidex.

A device used to measure humidity is called a hygrometer; one used to regulate it is called a humidistat, or sometimes hygrostat. (These are analogous to a thermometer and thermostat for temperature, respectively.)

Read more about this topic:  Relative Humidity

Famous quotes containing the words important and/or facts:

    Young children make only the simple assumption: “This is life—you go along....” He stands ready to go along with whatever adults seem to want. He stands poised, trying to figure out what they want. The young child is almost at the mercy of adults—it is so important to him to please.
    James L. Hymes, Jr. (20th century)

    Each truth that a writer acquires is a lantern, which he turns full on what facts and thoughts lay already in his mind, and behold, all the mats and rubbish which had littered his garret become precious. Every trivial fact in his private biography becomes an illustration of this new principle, revisits the day, and delights all men by its piquancy and new charm.
    Ralph Waldo Emerson (1803–1882)