Regular Language - Formal Definition

Formal Definition

The collection of regular languages over an alphabet Σ is defined recursively as follows:

  • The empty language Ø is a regular language.
  • For each a ∈ Σ (a belongs to Σ), the singleton language {a} is a regular language.
  • If A and B are regular languages, then AB (union), AB (concatenation), and A* (Kleene star) are regular languages.
  • No other languages over Σ are regular.

See regular expression for its syntax and semantics. Note that the above cases are in effect the defining rules of regular expression.

Examples

All finite languages are regular; in particular the empty string language {ε} = Ø* is regular. Other typical examples include the language consisting of all strings over the alphabet {a, b} which contain an even number of as, or the language consisting of all strings of the form: several as followed by several bs.

A simple example of a language that is not regular is the set of strings . Intuitively, it cannot be recognized with a finite automaton, since a finite automaton has finite memory and it cannot remember the exact number of a's. Techniques to prove this fact rigorously are given below.

Read more about this topic:  Regular Language

Famous quotes containing the words formal and/or definition:

    There must be a profound recognition that parents are the first teachers and that education begins before formal schooling and is deeply rooted in the values, traditions, and norms of family and culture.
    Sara Lawrence Lightfoot (20th century)

    The definition of good prose is proper words in their proper places; of good verse, the most proper words in their proper places. The propriety is in either case relative. The words in prose ought to express the intended meaning, and no more; if they attract attention to themselves, it is, in general, a fault.
    Samuel Taylor Coleridge (1772–1834)