Regular Economy

A regular economy is an economy characterized by an excess demand function which has the property that its slope at any equilibrium price vector is non-zero. In other words, if we graph the excess demand function against prices, then the excess demand function "cuts" the x-axis assuring that each equilibrium is locally unique. Local uniqueness in turn permits the use of comparative statics - an analysis of how the economy responds to external shocks - as long as these shocks are not too large.

An important result due to Debreu (1970) states that almost any economy, defined by an initial distribution of consumer's endowments, is regular. In technical terms, the set of nonregular economies is of Lebesgue measure zero.

Combined with the index theorem this result implies that almost any economy will have a finite (and odd) number of equilibria.

Famous quotes containing the words regular and/or economy:

    My attitude toward punctuation is that it ought to be as conventional as possible. The game of golf would lose a good deal if croquet mallets and billiard cues were allowed on the putting green. You ought to be able to show that you can do it a good deal better than anyone else with the regular tools before you have a license to bring in your own improvements.
    Ernest Hemingway (1899–1961)

    Unaware of the absurdity of it, we introduce our own petty household rules into the economy of the universe for which the life of generations, peoples, of entire planets, has no importance in relation to the general development.
    Alexander Herzen (1812–1870)