Relation With Coxeter Groups
A reflection group W admits a presentation of a special kind discovered and studied by H.S.M. Coxeter. The reflections in the faces of a fixed fundamental "chamber" are generators ri of W of order 2. All relations between them formally follow from the relations
expressing the fact that the product of the reflections ri and rj in two hyperplanes Hi and Hj meeting at an angle is a rotation by the angle fixing the subspace Hi ∩ Hj of codimension 2. Thus, viewed as an abstract group, every reflection group is a Coxeter group.
Read more about this topic: Reflection Group
Famous quotes containing the words relation and/or groups:
“Parents ought, through their own behavior and the values by which they live, to provide direction for their children. But they need to rid themselves of the idea that there are surefire methods which, when well applied, will produce certain predictable results. Whatever we do with and for our children ought to flow from our understanding of and our feelings for the particular situation and the relation we wish to exist between us and our child.”
—Bruno Bettelheim (20th century)
“Instead of seeing society as a collection of clearly defined interest groups, society must be reconceptualized as a complex network of groups of interacting individuals whose membership and communication patterns are seldom confined to one such group alone.”
—Diana Crane (b. 1933)