The General Linear Case
Let y be a column vector of M endogenous variables. In the case above with Q and P, we have M = 2. Let x be a column vector of exogenous variables; in the case above x consists only of Z. The structural linear model (without error terms, as above) is:
where A and B are matrices; A is a square M × M matrix. The reduced form of the system is:
Again, each endogenous variable depends on each exogenous variable. It is easily verified that:
Without restrictions on the A and B, the coefficients of A and B can not be identified from data on y and x: each row of the structural model is just a linear relation between y and z with unknown coefficients. (Again the parameter identification problem.) The M reduced form equations (the rows of the matrix equation y = Π x above) can be identified from the data because each of them contains only one endogenous variable.
Read more about this topic: Reduced Form
Famous quotes containing the words general and/or case:
“There are two great rules in life, the one general and the other particular. The first is that every one can in the end get what he wants if he only tries. This is the general rule. The particular rule is that every individual is more or less of an exception to the general rule.”
—Samuel Butler (18351902)
“My case is a species of madness, only that it is a derangement of the Volition, & not of the intellectual faculties.”
—Samuel Taylor Coleridge (17721834)