Recursively Enumerable Language
In mathematics, logic and computer science, a formal language is called recursively enumerable (also recognizable, partially decidable or Turing-acceptable) if it is a recursively enumerable subset in the set of all possible words over the alphabet of the language, i.e., if there exists a Turing machine which will enumerate all valid strings of the language.
Recursively enumerable languages are known as type-0 languages in the Chomsky hierarchy of formal languages. All regular, context-free, context-sensitive and recursive languages are recursively enumerable.
The class of all recursively enumerable languages is called RE.
Read more about Recursively Enumerable Language: Definitions, Example, Closure Properties
Famous quotes containing the word language:
“Syntax and vocabulary are overwhelming constraintsthe rules that run us. Language is using us to talkwe think were using the language, but language is doing the thinking, were its slavish agents.”
—Harry Mathews (b. 1930)