Rectangle Method

In mathematics, specifically in integral calculus, the rectangle method (also called the midpoint or mid-ordinate rule) computes an approximation to a definite integral, made by finding the area of a collection of rectangles whose heights are determined by the values of the function.

Specifically, the interval over which the function is to be integrated is divided into equal subintervals of length . The rectangles are then drawn so that either their left or right corners, or the middle of their top line lies on the graph of the function, with bases running along the -axis. The approximation to the integral is then calculated by adding up the areas (base multiplied by height) of the rectangles, giving the formula:

where and .

The formula for above gives for the Top-left corner approximation.

As N gets larger, this approximation gets more accurate. In fact, this computation is the spirit of the definition of the Riemann integral and the limit of this approximation as is defined and equal to the integral of on if this Riemann integral is defined. Note that this is true regardless of which is used, however the midpoint approximation tends to be more accurate for finite .

The different rectangle approximations
Top-left corner approximation
Midpoint approximation
Top-right corner approximation

Read more about Rectangle Method:  Error

Famous quotes containing the word method:

    I know no method to secure the repeal of bad or obnoxious laws so effective as their stringent execution.
    Ulysses S. Grant (1822–1885)