Rearrangement Reaction

A rearrangement reaction is a broad class of organic reactions where the carbon skeleton of a molecule is rearranged to give a structural isomer of the original molecule. Often a substituent moves from one atom to another atom in the same molecule. In the example below the substituent R moves from carbon atom 1 to carbon atom 2:

Intermolecular rearrangements also take place.

A rearrangement is not well represented by simple and discrete electron transfers (represented by curly arrows in organic chemistry texts). The actual mechanism of alkyl groups moving, as in Wagner-Meerwein rearrangement, probably involves transfer of the moving alkyl group fluidly along a bond, not ionic bond-breaking and forming. In pericyclic reactions, explanation by orbital interactions give a better picture than simple discrete electron transfers. It is, nevertheless, possible to draw the curved arrows for a sequence of discrete electron transfers that give the same result as a rearrangement reaction, although these are not necessarily realistic. In allylic rearrangement, the reaction is indeed ionic.

Three key rearrangement reactions are 1,2-rearrangements, pericyclic reactions and olefin metathesis.

Read more about Rearrangement Reaction:  1,2-rearrangements, Pericyclic Reactions, Olefin Metathesis

Famous quotes containing the word reaction:

    Children, randomly at first, hit upon something sooner or later that is their mother’s and/or father’s Achilles’ heel, a kind of behavior that especially upsets, offends, irritates or embarrasses them. One parent dislikes name-calling, another teasing...another bathroom jokes. For the parents, this behavior my have ties back to their childhood, many have been something not allowed, forbidden, and when it appears in the child, it causes high-voltage reaction in the parent.
    Ellen Galinsky (20th century)