A rationally connected variety V is a projective algebraic variety over an algebraically closed field such that through every two points there passes the image of a regular map from the projective line into V. Equivalently, a variety is rationally connected if every two points are connected by a rational curve contained in the variety.
This definition differs form that of path connectedness only by the nature of the path, but is very different, as the only algebraic curves which are rationally connected are the rational ones.
Every rational variety, including the projective spaces, is rationally connected, but the converse is false. The class of the rationally connected varieties is thus a generalization of the class of the rational varieties. Unirational varieties are rationally connected, but it is not known if the converse holds.
Read more about this topic: Rational Variety
Famous quotes containing the words connected and/or variety:
“We cant nourish our children if we dont nourish ourselves.... Parents who manage to stay married, sane, and connected to each other share one basic characteristic: The ability to protect even small amounts of time together no matter what else is going on in their lives.”
—Ron Taffel (20th century)
“True variety is in that plenitude of real and unexpected elements, in the branch charged with blue flowers thrusting itself, against all expectations, from the springtime hedge which seems already too full, while the purely formal imitation of variety ... is but void and uniformity, that is, that which is most opposed to variety....”
—Marcel Proust (18711922)