Rationality and Parameterization
Let V be an affine algebraic variety of dimension d defined by a prime ideal I=⟨f1, ..., fk⟩ in . If V is rational, then there are n+1 polynomials g0, ..., gn in such that In order words, we have a rational parameterization of the variety.
Conversely, such a rational parameterization induces a field homomorphism of the field of functions of V into . But this homomorphism is not necessarily onto. If such a parameterization exists, the variety is said unirational. Lüroth's theorem (see below) implies that unirational curves are rational. Castelnuovo's theorem implies also that, in characteristic zero, every unirational surface is rational.
Read more about this topic: Rational Variety
Related Phrases
Related Words