In algebra, the rational root theorem (or rational root test) states a constraint on rational solutions (or roots) of the polynomial equation
with integer coefficients.
If a0 and an are nonzero, then each rational solution x, when written as a fraction x = p/q in lowest terms (i.e., the greatest common divisor of p and q is 1), satisfies
- p is an integer factor of the constant term a0, and
- q is an integer factor of the leading coefficient an.
Thus, a list of possible rational roots of the equation can be derived using the formula .
The rational root theorem is a special case (for a single linear factor) of Gauss's lemma on the factorization of polynomials. The integral root theorem is a special case of the rational root theorem if the leading coefficient an = 1.
Read more about Rational Root Theorem: Example
Famous quotes containing the words rational, root and/or theorem:
“Social and scientific progress are assured, sir, once our great system of postpossession payments is in operation, not the installment plan, no sir, but a system of small postpossession payments that clinch the investment. No possible rational human wish unfulfilled. A man with a salary of fifty dollars a week can start payments on a Rolls-Royce, the Waldorf-Astoria, or a troupe of trained seals if he so desires.”
—John Dos Passos (18961970)
“But a cultivated man becomes ashamed of his property, out of new respect for his nature. Especially he hates what he has if he see that it is accidental,came to him by inheritance, or gift, or crime; then he feels that it is not having; it does not belong to him, has no root in him and merely lies there because no revolution or no robber takes it away.”
—Ralph Waldo Emerson (18031882)
“To insure the adoration of a theorem for any length of time, faith is not enough, a police force is needed as well.”
—Albert Camus (19131960)