Rational Number - p-adic Numbers

p-adic Numbers

See also: P-adic Number

In addition to the absolute value metric mentioned above, there are other metrics which turn Q into a topological field:

Let p be a prime number and for any non-zero integer a, let |a|p = pn, where pn is the highest power of p dividing a.

In addition set |0|p = 0. For any rational number a/b, we set |a/b|p = |a|p / |b|p.

Then dp(x,y) = |xy|p defines a metric on Q.

The metric space (Q,dp) is not complete, and its completion is the p-adic number field Qp. Ostrowski's theorem states that any non-trivial absolute value on the rational numbers Q is equivalent to either the usual real absolute value or a p-adic absolute value.

Read more about this topic:  Rational Number

Famous quotes containing the word numbers:

    I’m not even thinking straight any more. Numbers buzz in my head like wasps.
    Kurt Neumann (1906–1958)