Rational Number - p-adic Numbers

p-adic Numbers

See also: P-adic Number

In addition to the absolute value metric mentioned above, there are other metrics which turn Q into a topological field:

Let p be a prime number and for any non-zero integer a, let |a|p = pn, where pn is the highest power of p dividing a.

In addition set |0|p = 0. For any rational number a/b, we set |a/b|p = |a|p / |b|p.

Then dp(x,y) = |xy|p defines a metric on Q.

The metric space (Q,dp) is not complete, and its completion is the p-adic number field Qp. Ostrowski's theorem states that any non-trivial absolute value on the rational numbers Q is equivalent to either the usual real absolute value or a p-adic absolute value.

Read more about this topic:  Rational Number

Famous quotes containing the word numbers:

    He bundles every forkful in its place,
    And tags and numbers it for future reference,
    So he can find and easily dislodge it
    In the unloading. Silas does that well.
    He takes it out in bunches like birds’ nests.
    Robert Frost (1874–1963)