Definition
The rational normal curve may be given parametrically as the image of the map
which assigns to the homogeneous coordinates the value
In the affine coordinates of the chart the map is simply
That is, the rational normal curve is the closure by a single point at infinity of the affine curve .
Equivalently, rational normal curve may be understood to be a projective variety, defined as the common zero locus of the homogeneous polynomials
where are the homogeneous coordinates on . The full set of these polynomials is not needed; it is sufficient to pick n of these to specify the curve.
Read more about this topic: Rational Normal Curve
Famous quotes containing the word definition:
“Beauty, like all other qualities presented to human experience, is relative; and the definition of it becomes unmeaning and useless in proportion to its abstractness. To define beauty not in the most abstract, but in the most concrete terms possible, not to find a universal formula for it, but the formula which expresses most adequately this or that special manifestation of it, is the aim of the true student of aesthetics.”
—Walter Pater (18391894)
“Im beginning to think that the proper definition of Man is an animal that writes letters.”
—Lewis Carroll [Charles Lutwidge Dodgson] (18321898)
“... we all know the wags definition of a philanthropist: a man whose charity increases directly as the square of the distance.”
—George Eliot [Mary Ann (or Marian)