Ratio Test - Proof

Proof

Below is a proof of the validity of the original ratio test.

Suppose that . We can then show that the series converges absolutely by showing that its terms will eventually become less than those of a certain convergent geometric series. To do this, let . Then r is strictly between L and 1, and for sufficiently large n (say, n greater than N). Hence for each n > N and i > 0, and so

\sum_{i=N+1}^{\infty}|a_{i}| = \sum_{i=1}^{\infty}|a_{N+i}|
< \sum_{i=1}^{\infty}r^{i}|a_{N+1}| = |a_{N+1}|\sum_{i=1}^{\infty}r^{i}
= |a_{N+1}|\frac{r}{1 - r} < \infty.

That is, the series converges absolutely.

On the other hand, if L > 1, then for sufficiently large n, so that the limit of the summands is non-zero. Hence the series diverges.

Read more about this topic:  Ratio Test

Famous quotes containing the word proof:

    There is no better proof of a man’s being truly good than his desiring to be constantly under the observation of good men.
    François, Duc De La Rochefoucauld (1613–1680)

    It comes to pass oft that a terrible oath, with a swaggering accent sharply twanged off, gives manhood more approbation than ever proof itself would have earned him.
    William Shakespeare (1564–1616)

    Talk shows are proof that conversation is dead.
    Mason Cooley (b. 1927)