Ratio Test - Proof

Proof

Below is a proof of the validity of the original ratio test.

Suppose that . We can then show that the series converges absolutely by showing that its terms will eventually become less than those of a certain convergent geometric series. To do this, let . Then r is strictly between L and 1, and for sufficiently large n (say, n greater than N). Hence for each n > N and i > 0, and so

\sum_{i=N+1}^{\infty}|a_{i}| = \sum_{i=1}^{\infty}|a_{N+i}|
< \sum_{i=1}^{\infty}r^{i}|a_{N+1}| = |a_{N+1}|\sum_{i=1}^{\infty}r^{i}
= |a_{N+1}|\frac{r}{1 - r} < \infty.

That is, the series converges absolutely.

On the other hand, if L > 1, then for sufficiently large n, so that the limit of the summands is non-zero. Hence the series diverges.

Read more about this topic:  Ratio Test

Famous quotes containing the word proof:

    In the reproof of chance
    Lies the true proof of men.
    William Shakespeare (1564–1616)

    Sculpture and painting are very justly called liberal arts; a lively and strong imagination, together with a just observation, being absolutely necessary to excel in either; which, in my opinion, is by no means the case of music, though called a liberal art, and now in Italy placed even above the other two—a proof of the decline of that country.
    Philip Dormer Stanhope, 4th Earl Chesterfield (1694–1773)

    It comes to pass oft that a terrible oath, with a swaggering accent sharply twanged off, gives manhood more approbation than ever proof itself would have earned him.
    William Shakespeare (1564–1616)