Algebra of Random Variables
The ratio is one type of algebra for random variables: Related to the ratio distribution are the product distribution, sum distribution and difference distribution. More generally, one may talk of combinations of sums, differences, products and ratios. Many of these distributions are described in Melvin D. Springer's book from 1979 The Algebra of Random Variables.
The algebraic rules known with ordinary numbers do not apply for the algebra of random variables. For example, if a product is C = AB and a ratio is D=C/A it does not necessarily mean that the distributions of D and B are the same. Indeed, a peculiar effect is seen for the Cauchy distribution: The product and the ratio of two independent Cauchy distributions (with the same scale parameter and the location parameter set to zero) will give the same distribution. This becomes evident when regarding the Cauchy distribution as itself a ratio distribution of two Gaussian distributions: Consider two Cauchy random variables, and each constructed from two Gaussian distributions and then
where . The first term is the ratio of two Cauchy distributions while the last term is the product of two such distributions.
Read more about this topic: Ratio Distribution
Famous quotes containing the words algebra of, algebra, random and/or variables:
“Poetry has become the higher algebra of metaphors.”
—José Ortega Y Gasset (18831955)
“Poetry has become the higher algebra of metaphors.”
—José Ortega Y Gasset (18831955)
“And catch the gleaming of a random light,
That tells me that the ship I seek is passing, passing.”
—Paul Laurence Dunbar (18721906)
“Science is feasible when the variables are few and can be enumerated; when their combinations are distinct and clear. We are tending toward the condition of science and aspiring to do it. The artist works out his own formulas; the interest of science lies in the art of making science.”
—Paul Valéry (18711945)