Rasch Model Estimation - Joint Maximum Likelihood

Joint Maximum Likelihood

Let denote the observed response for person n on item i. The probability of the observed data matrix, which is the product of the probabilities of the individual responses, is given by the likelihood function


\Lambda = \frac{\prod_{n} \prod_{i} \exp(x_{ni}(\beta_n-\delta_i))}{\prod_{n} \prod_{i}(1+\exp(\beta_n-\delta_i))}.

The log-likelihood function is then


\log \Lambda = \sum_n^N \beta_n r_n - \sum_i^I \delta_i s_i - \sum_n^N \sum_i^I \log(1+\exp(\beta_n-\delta_i))

where is the total raw score for person n, is the total raw score for item i, N is the total number of persons and I is the total number of items.

Solution equations are obtained by taking partial derivatives with respect to and and setting the result equal to 0. The JML solution equations are:


s_i = \sum_n^N p_{ni},\quad i=1,\dots,I

r_n = \sum_i^I p_{ni},\quad n=1,\dots,N

where . A more accurate estimate of each is obtained by multiplying the estimates by .

Read more about this topic:  Rasch Model Estimation

Famous quotes containing the words joint, maximum and/or likelihood:

    No Government can be long secure without a formidable Opposition. It reduces their supporters to that tractable number which can be managed by the joint influences of fruition and hope. It offers vengeance to the discontented, and distinction to the ambitious; and employs the energies of aspiring spirits, who otherwise may prove traitors in a division or assassins in a debate.
    Benjamin Disraeli (1804–1881)

    I had a quick grasp of the secret to sanity—it had become the ability to hold the maximum of impossible combinations in one’s mind.
    Norman Mailer (b. 1923)

    What likelihood is there of corrupting a man who has no ambition?
    Samuel Richardson (1689–1761)