The Fundamental Relation
Permutations are sets of labelled cycles. Using the labelled case of the Flajolet–Sedgewick fundamental theorem and writing for the set of permutations and for the singleton set, we have
Translating into exponential generating functions (EGFs), we have
where we have used the fact that the EGF of the set of permutations (there are n! permutations of n elements) is
This one equation will allow us to derive a surprising number of permutation statistics. Firstly, by dropping terms from, i.e. exp, we may constrain the number of cycles that a permutation contains, e.g. by restricting the EGF to we obtain permutations containing two cycles. Secondly, note that the EGF of labelled cycles, i.e. of, is
because there are k! / k labelled cycles.
This means that by dropping terms from this generating function, we may constrain the size of the cycles that occur in a permutation and obtain an EGF of the permutations containing only cycles of a given size.
Now instead of dropping, let's put different weights on different size cycles. If is a weight function that depends only on the size k of the cycle and for brevity we write
the value of b for a permutation to be the sum of its values on the cycles, then we may mark cycles of length k with ub(k) and obtain a bivariate generating function g(z, u) that describes the parameter, i.e.
This is a mixed generating function which is exponential in the permutation size and ordinary in the secondary parameter u. Differentiating and evaluating at u = 1, we have
i.e. the EGF of the sum of b over all permutations, or alternatively, the OGF, or more precisely, PGF (probability generating function) of the expectation of b.
This article uses the coefficient extraction operator, documented on the page for formal power series.
Read more about this topic: Random Permutation Statistics
Famous quotes containing the words fundamental and/or relation:
“This is the fundamental idea of culture, insofar as it sets but one task for each of us: to further the production of the philosopher, of the artist, and of the saint within us and outside us, and thereby to work at the consummation of nature.”
—Friedrich Nietzsche (18441900)
“The psychoanalysis of individual human beings, however, teaches us with quite special insistence that the god of each of them is formed in the likeness of his father, that his personal relation to God depends on his relation to his father in the flesh and oscillates and changes along with that relation, and that at bottom God is nothing other than an exalted father.”
—Sigmund Freud (18561939)