Probability That A Random Subset of Lies On The Same Cycle
Select a random subset Q of containing m elements and a random permutation, and ask about the probability that all elements of Q lie on the same cycle. This is another average parameter. The function b(k) is equal to, because a cycle of length k contributes subsets of size m, where for k < m. This yields
Averaging out we obtain that the probability of the elements of Q being on the same cycle is
or
In particular, the probability that two elements p < q are on the same cycle is 1/2.
Read more about this topic: Random Permutation Statistics
Famous quotes containing the words probability, random, lies and/or cycle:
“Crushed to earth and rising again is an authors gymnastic. Once he fails to struggle to his feet and grab his pen, he will contemplate a fact he should never permit himself to face: that in all probability books have been written, are being written, will be written, better than anything he has done, is doing, or will do.”
—Fannie Hurst (18891968)
“It is a secret from nobody that the famous random event is most likely to arise from those parts of the world where the old adage There is no alternative to victory retains a high degree of plausibility.”
—Hannah Arendt (19061975)
“The beauty myth moves for men as a mirage; its power lies in its ever-receding nature. When the gap is closed, the lover embraces only his own disillusion.”
—Naomi Wolf (b. 1962)
“Oh, life is a glorious cycle of song,
A medley of extemporanea;
And love is a thing that can never go wrong;
And I am Marie of Roumania.”
—Dorothy Parker (18931967)