Random Permutation Statistics - Number of Permutations Containing Cycles

Number of Permutations Containing Cycles

Applying the Flajolet–Sedgewick fundamental theorem, i.e. the labelled enumeration theorem with, to the set

we obtain the generating function

 g_m(z) =
\frac{1}{|S_m|} \left( \log \frac{1}{1-z} \right)^m =
\frac{1}{m!} \left( \log \frac{1}{1-z} \right)^m.

The term

 (-1)^{n+m} n! \; g_m(z) =
\left

yields the Stirling numbers of the first kind, i.e. is the EGF of the unsigned Stirling numbers of the first kind.

We can compute the OGF of these numbers for n fixed, i.e.

 s_n(w) =
\sum_{m=0}^n \left w^m.

Start with

 g_m(z) =
\sum_{n\ge m} \frac{(-1)^{n+m}}{n!}
\left z^n

which yields

 (-1)^m g_m(z) w^m =
\sum_{n\ge m} \frac{(-1)^n}{n!}
\left w^m z^n.

Summing this, we obtain

 \sum_{m\ge 0} (-1)^m g_m(z) w^m =
\sum_{m\ge 0} \sum_{n\ge m} \frac{(-1)^n}{n!}
\left w^m z^n =
\sum_{n\ge 0}\frac{(-1)^n}{n!} z^n
\sum_{m=0}^n \left w^m.

Using the formula for on the left, the definition of on the right, and the binomial theorem, we obtain

 (1-z)^w = \sum_{n\ge 0} {w \choose n} (-1)^n z^n =
\sum_{n\ge 0}\frac{(-1)^n}{n!} s_n(w) z^n.

Comparing the coefficients of, and using the definition of the binomial coefficient, we finally have

a falling factorial.

Read more about this topic:  Random Permutation Statistics

Famous quotes containing the words number of, number, permutations and/or cycles:

    ... in every State there are more women who can read and write than the whole number of illiterate male voters; more white women who can read and write than all Negro voters; more American women who can read and write than all foreign voters.
    —National Woman Suffrage Association. As quoted in History of Woman Suffrage, vol. 4, ch. 13, by Susan B. Anthony and Ida Husted Harper (1902)

    The basis of successful relief in national distress is to mobilize and organize the infinite number of agencies of self help in the community. That has been the American way.
    Herbert Hoover (1874–1964)

    The new shopping malls make possible the synthesis of all consumer activities, not least of which are shopping, flirting with objects, idle wandering, and all the permutations of these.
    Jean Baudrillard (b. 1929)

    The stars which shone over Babylon and the stable in Bethlehem still shine as brightly over the Empire State Building and your front yard today. They perform their cycles with the same mathematical precision, and they will continue to affect each thing on earth, including man, as long as the earth exists.
    Linda Goodman (b. 1929)