Random Permutation Statistics - Expected Number of Transpositions of A Random Permutation

Expected Number of Transpositions of A Random Permutation

We can use the disjoint cycle decomposition of a permutation to factorize it as a product of transpositions by replacing a cycle of length k by transpositions. E.g. the cycle factors as . The function for cycles is equal to and we obtain


g(z, u) = \left( \frac{1}{1-uz} \right)^{1/u}

and

 \frac{\partial}{\partial u} g(z, u) \Bigg|_{u=1} =
\frac{1}{1-z} \sum_{k\ge 1} (k-1) \frac{z^k}{k} =
\frac{z}{(1-z)^2} - \frac{1}{1-z} \log \frac{1}{1-z}.

Hence the expected number of transpositions is

We could also have obtained this formula by noting that the number of transpositions is obtained by adding the lengths of all cycles (which gives n) and subtracting one for every cycle (which gives by the previous section).

Note that again generates the unsigned Stirling numbers of the first kind, but in reverse order. More precisely, we have

 (-1)^m n! \; g(z, u) =
\left

To see this, note that the above is equivalent to

 (-1)^{n+m} n! \; g(z, u)|_{u=1/u} |_{z=uz} =
\left

and that

 g(z, u)|_{u=1/u} |_{z=uz} = \left( \frac{1}{1-z} \right)^u =
\frac{1}{m!} \left( \log \frac{1}{1-z} \right)^m,

which we saw to be the EGF of the unsigned Stirling numbers of the first kind in the section on permutations consisting of precisely m cycles.

Read more about this topic:  Random Permutation Statistics

Famous quotes containing the words expected, number and/or random:

    We are expected to put the utmost energy, of every power that we have, into the service of our fellow men, never sparing ourselves, not condescending to think of what is going to happen to ourselves, but ready, if need be, to go to the utter length of self-sacrifice.
    Woodrow Wilson (1856–1924)

    I believe if we introduced the Lord’s Prayer here, senators would propose a large number of amendments to it.
    Henry Wilson (1812–1875)

    It is a secret from nobody that the famous random event is most likely to arise from those parts of the world where the old adage “There is no alternative to victory” retains a high degree of plausibility.
    Hannah Arendt (1906–1975)