A random field is a generalization of a stochastic process such that the underlying parameter need no longer be a simple real or integer valued "time", but can instead take values that are multidimensional vectors, or points on some manifold.
At its most basic, discrete case, a random field is a list of random numbers whose indices are mapped onto a space (of n dimensions). Values in a random field are usually spatially correlated in one way or another. In its most basic form this might mean that adjacent values (i.e. values with adjacent indices) do not differ as much as values that are further apart. This is an example of a covariance structure, many different types of which may be modeled in a random field. More generally, the values might be defined over a continuous domain, and the random field might be thought of as a "function valued" random variable.
Read more about Random Field: Definition and Examples, Applications
Famous quotes containing the words random and/or field:
“Novels as dull as dishwater, with the grease of random sentiments floating on top.”
—Italo Calvino (19231985)
“... no young colored person in the United States today can truthfully offer as an excuse for lack of ambition or aspiration that members of his race have accomplished so little, he is discouraged from attempting anything himself. For there is scarcely a field of human endeavor which colored people have been allowed to enter in which there is not at least one worthy representative.”
—Mary Church Terrell (18631954)