Ramanujan Graph

In spectral graph theory, a Ramanujan graph, named after Srinivasa Ramanujan, is a regular graph whose spectral gap is almost as large as possible (see extremal graph theory). Such graphs are excellent spectral expanders.

Examples of Ramanujan graphs include the clique, the biclique, and the Petersen graph. As Murty's survey paper notes, Ramanujan graphs "fuse diverse branches of pure mathematics, namely, number theory, representation theory, and algebraic geometry". As an example of this, a regular graph is Ramanujan if and only if its Ihara zeta function satisfies an analog of the Riemann hypothesis..


Read more about Ramanujan Graph:  Definition, Extremality of Ramanujan Graphs, Constructions

Famous quotes containing the word graph:

    In this Journal, my pen is a delicate needle point, tracing out a graph of temperament so as to show its daily fluctuations: grave and gay, up and down, lamentation and revelry, self-love and self-disgust. You get here all my thoughts and opinions, always irresponsible and often contradictory or mutually exclusive, all my moods and vapours, all the varying reactions to environment of this jelly which is I.
    W.N.P. Barbellion (1889–1919)