Rainflow-counting Algorithm

The rainflow-counting algorithm (also known as the "rain-flow counting method") is used in the analysis of fatigue data in order to reduce a spectrum of varying stress into a set of simple stress reversals. Its importance is that it allows the application of Miner's rule in order to assess the fatigue life of a structure subject to complex loading. The algorithm was developed by Tatsuo Endo and M. Matsuishi in 1968. Though there are a number of cycle-counting algorithms for such applications, the rainflow method is the most popular as of 2008.

Downing and Socie created one of the more widely referenced and utilized rainflow cycle-counting algorithms in 1982, which was included as one of many cycle-counting algorithms in ASTM E 1049-85. This algorithm is used in Sandia National Laboratories LIFE2 code for the fatigue analysis of wind turbine components.

Igor Rychlik gave a mathematical definition for the rainflow counting method, thus enabling closed-form computations from the statistical properties of the load signal.

For simple periodic loadings, such as Figure 1, rainflow counting is unnecessary. That sequence clearly has 10 cycles of amplitude 10 MPa and a structure's life can be estimated from a simple application of the relevant S-N curve.

Compare this with Figure 2 which cannot be assessed in terms of simply-described stress reversals.

Read more about Rainflow-counting Algorithm:  The Algorithm, Example