Rain Garden - Restoring The Water Cycle and Mitigating Urbanization

Restoring The Water Cycle and Mitigating Urbanization

In developed areas, natural depressions where storm water would pool, are filled in. The surface of the ground is often leveled or paved. Storm water is directed into storm drains which often may cause overflows of combined sewer systems or poisoning, erosion or flooding of waterways receiving the storm water runoff. Redirected storm water is often warmer than the groundwater normally feeding a stream, and has been linked to upset in some aquatic ecosystems primarily through the reduction of dissolved oxygen (DO). Storm water runoff is also a source of a wide variety of pollutants washed off hard or compacted surfaces during rain events. These pollutants include volatile organic compounds, pesticides, herbicides, hydrocarbons and trace metals Rain gardens are designed to capture the initial flow of storm water and reduce the accumulation of toxins flowing directly into natural waterways through ground filtration. They also reduce energy consumption. For example, “the cumulative storage capacity of these rain gardens exceeds a conventional stormwater’s system’s by 10 times.” The National Science Foundation, the United States Environmental Protection Agency, and a number of research institutions are presently studying the impact of augmenting rain gardens with materials capable of capture or chemical reduction of the pollutants to benign compounds.

Rain gardens are often located near a building’s roof drainpipe (with or without rainwater tanks). Most rain gardens are designed to be an endpoint of drainage with a capacity to percolate all incoming water through a series of soil or gravel layers beneath the surface plantings. A French drain may be used to direct a portion of the rainwater to an overflow location for heavier rain events. By reducing peak stormwater discharge, rain gardens extend hydraulic lag time and somewhat mimic the natural water cycle displaced by urban development and allow for groundwater recharge. While rain gardens always allow for restored groundwater recharge, and reduced stormwater volumes, they may also increase pollution unless remediation materials are included in the design of the filtration layers .

The primary challenge of rain garden design centers on calculating the types of pollutants and the acceptable loads of pollutants the rain garden's filtration system can handle during storm-water events. This challenge is specifically acute when a rain event occurs after a longer dry period. The initial storm water is often highly contaminated with the accumulated pollutants from dry periods. Rain garden designers have previously focused on finding robust native plants and encouraging adequate biofiltration, but recently have begun augmenting filtration layers with media specifically suited to chemically reduce redox of incoming polutant streams.

Rain gardens are beneficial for many reasons: improve water quality by filtering runoff, provide localized flood control, are aesthetically pleasing, and provide interesting planting opportunities. They also encourage wildlife and biodiversity, tie together buildings and their surrounding environments in attractive and environmentally advantageous ways, and provide significant partial solutions to important environmental problems that affect us all.

A rain garden provides a way to use and optimize any rain that falls, reducing or avoiding the need for irrigation. They allow a household or building to deal with excessive rainwater runoff without burdening the public storm water systems. Rain gardens differ from retention basins, in that the water will infiltrate the ground within a day or two. This creates the advantage that the rain garden does not allow mosquitoes to breed.

Read more about this topic:  Rain Garden

Famous quotes containing the words restoring, water and/or cycle:

    We simply must have faith in each other, faith in our ability to govern ourselves, and faith in the future of this Nation. Restoring that faith and that confidence to America is now the most important task we face.
    Jimmy Carter (James Earl Carter, Jr.)

    Good Master Mustardseed, I know your patience well. That same cowardly, giant-like ox-beef hath devoured many a gentleman of your house. I promise you, your kindred hath made my eyes water ere now.
    William Shakespeare (1564–1616)

    Oh, life is a glorious cycle of song,
    A medley of extemporanea;
    And love is a thing that can never go wrong;
    And I am Marie of Roumania.
    Dorothy Parker (1893–1967)