Radical (chemistry)
In chemistry, a radical (more precisely, a free radical) is an atom, molecule, or ion that has unpaired valence electrons or an open electron shell, and therefore may be seen as having one or more "dangling" covalent bonds.
With some exceptions, these "dangling" bonds make free radicals highly chemically reactive towards other substances, or even towards themselves: their molecules will often spontaneously dimerize or polymerize if they come in contact with each other. Most radicals are reasonably stable only at very low concentrations in inert media or in vacuum.
A notable example of free radical is the hydroxyl radical (HO•), a molecule that is one hydrogen atom short of a water molecule and thus has one bond "dangling" from the oxygen. Two other examples are the carbene molecule (:CH
2), which has two dangling bonds; and the superoxide anion (•O−
2), the oxygen molecule O
2 with one extra electron, which has one dangling bond. On the other hand, the hydroxyl anion (HO−
), the oxide anion (O2−
) and the carbenium cation (CH+
3) are not radicals, since the bonds that may appear to be dangling are in fact resolved by the addition or removal of electrons.
Free radicals may be created in a number of ways, including synthesis with very dilute or rarefied reagents, reactions at very low temperatures, or breakup of larger molecules. The latter can be affected by any process that puts enough energy into the parent molecule, such as ionizing radiation, heat, electrical discharges, electrolysis, and chemical reactions. Indeed, radicals are intermediate stages in many chemical reactions.
Free radicals play an important role in combustion, atmospheric chemistry, polymerization, plasma chemistry, biochemistry, and many other chemical processes. In living organisms, the free radicals superoxide and nitric oxide and their reaction products regulate many processes, such as control of vascular tone and thus blood pressure. They also play a key role in the intermediary metabolism of various biological compounds. Such radicals can even be messengers in a process dubbed redox signaling. A radical may be trapped within a solvent cage or be otherwise bound.
Until late in the 20th century the word "radical" was used in chemistry to indicate any connected group of atoms, such as a methyl group or a carboxyl, whether it was part of a larger molecule or a molecule on its own. The qualifier "free" was then needed to specify the unbound case. Following recent nomenclature revisions, a part of a larger molecule is now called a functional group or substituent, and "radical" now implies "free". However, the old nomenclature may still occur in the literature.
Read more about Radical (chemistry): History, Depiction in Chemical Reactions, Formation, Persistence and Stability, Reactivity, Combustion, Polymerization, Atmospheric Radicals, In Biology, Loose Definition of Radicals, Diagnostics, See Also
Famous quotes containing the word radical:
“Every genuine boy is a rebel and an anarch. If he were allowed to develop according to his own instincts, his own inclinations, society would undergo such a radical transformation as to make the adult revolutionary cower and cringe.”
—Henry Miller (18911980)