Radiation Hardening - Major Radiation Damage Sources

Major Radiation Damage Sources

Typical sources of exposure of electronics to ionizing radiation are the Van Allen radiation belts for satellites, nuclear reactors in power plants for sensors and control circuits, particle accelerators for control electronics particularly particle detector devices, residual radiation from isotopes in chip packaging materials, cosmic radiation for spacecraft and high-altitude aircraft, and nuclear explosions for potentially all military and civilian electronics.

  • Cosmic rays come from all directions and consist of approximately 85% protons, 14% alpha particles, and 1% heavy ions, together with x-ray and gamma-ray radiation. Most effects are caused by particles with energies between 108 and 2*1010 eV. The atmosphere filters most of these, so they are primarily a concern for spacecraft and high-altitude aircraft.
  • Solar particle events come from the direction of the sun and consist of a large flux of high-energy (several GeV) protons and heavy ions, again accompanied by x-ray radiation.
  • Van Allen radiation belts contain electrons (up to about 10 MeV) and protons (up to 100s MeV) trapped in the geomagnetic field. The particle flux in the regions farther from the Earth can vary wildly depending on the actual conditions of the sun and the magnetosphere. Due to their position they pose a concern for satellites.
  • Secondary particles result from interaction of other kinds of radiation with structures around the electronic devices.
  • Nuclear reactors produce gamma radiation and neutron radiation which can affect sensor and control circuits in nuclear power plants.
  • Particle accelerators produce high energy protons and electrons, and the secondary particles produced by their interactions product significant radiation damage on sensitive control and particle detector components, of the order of magnitude of 10 MRad/year for systems such as the Large Hadron Collider.
  • Nuclear explosions produce a short and extremely intense surge through a wide spectrum of electromagnetic radiation, an electromagnetic pulse (EMP), neutron radiation, and a flux of both primary and secondary charged particles. In case of a nuclear war they pose a potential concern for all civilian and military electronics.
  • Chip packaging materials were an insidious source of radiation that was found to be causing soft errors in new DRAM chips in the 1970s. Traces of radioactive elements in the packaging of the chips were producing alpha particles, which were then occasionally discharging some of the capacitors used to store the DRAM data bits. These effects have been reduced today by using purer packaging materials, and employing error-correcting codes to detect and often correct DRAM errors.

Read more about this topic:  Radiation Hardening

Famous quotes containing the words major, radiation, damage and/or sources:

    The politician who never made a mistake never made a decision.
    —John Major (b. 1943)

    There are no accidents, only nature throwing her weight around. Even the bomb merely releases energy that nature has put there. Nuclear war would be just a spark in the grandeur of space. Nor can radiation “alter” nature: she will absorb it all. After the bomb, nature will pick up the cards we have spilled, shuffle them, and begin her game again.
    Camille Paglia (b. 1947)

    Technological innovation has done great damage ... to eating habits. Food is now available in such unpleasant forms that one frequently finds smoking between courses to be an aid to digestion.
    Fran Lebowitz (b. 1950)

    The American grips himself, at the very sources of his consciousness, in a grip of care: and then, to so much of the rest of life, is indifferent. Whereas, the European hasn’t got so much care in him, so he cares much more for life and living.
    —D.H. (David Herbert)