Radial Basis Function
A radial basis function (RBF) is a real-valued function whose value depends only on the distance from the origin, so that ; or alternatively on the distance from some other point c, called a center, so that . Any function that satisfies the property is a radial function. The norm is usually Euclidean distance, although other distance functions are also possible. For example by using Lukaszyk-Karmowski metric, it is possible for some radial functions to avoid problems with ill conditioning of the matrix solved to determine coefficients wi (see below), since the is always greater than zero.
Sums of radial basis functions are typically used to approximate given functions. This approximation process can also be interpreted as a simple kind of neural network.
Read more about Radial Basis Function: RBF Types, Approximation, RBF Network
Famous quotes containing the words basis and/or function:
“Adolescents, for all their self-involvement, are emerging from the self-centeredness of childhood. Their perception of other people has more depth. They are better equipped at appreciating others reasons for action, or the basis of others emotions. But this maturity functions in a piecemeal fashion. They show more understanding of their friends, but not of their teachers.”
—Terri Apter (20th century)
“Uses are always much broader than functions, and usually far less contentious. The word function carries overtones of purpose and propriety, of concern with why something was developed rather than with how it has actually been found useful. The function of automobiles is to transport people and objects, but they are used for a variety of other purposesas homes, offices, bedrooms, henhouses, jetties, breakwaters, even offensive weapons.”
—Frank Smith (b. 1928)