Quasiperfect Number

In mathematics, a quasiperfect number is a theoretical natural number n for which the sum of all its divisors (the divisor function σ(n)) is equal to 2n + 1. Quasiperfect numbers are abundant numbers.

No quasiperfect numbers have been found so far, but if a quasiperfect number exists, it must be an odd square number greater than 1035 and have at least seven distinct prime factors.

Famous quotes containing the word number:

    If we remembered everything, we should on most occasions be as ill off as if we remembered nothing. It would take us as long to recall a space of time as it took the original time to elapse, and we should never get ahead with our thinking. All recollected times undergo, accordingly, what M. Ribot calls foreshortening; and this foreshortening is due to the omission of an enormous number of facts which filled them.
    William James (1842–1910)