Quantum Critical Point - Quantum Critical Endpoints

Quantum Critical Endpoints

Quantum critical points arise when a susceptibility diverges at zero temperature. There are a number of materials (such as CeNi2Ge2) where this occurs serendipitously. More frequently a material has to be tuned to a quantum critical point. Most commonly this is done by taking a system with a second-order phase transition which occurs at finite temperature and tuning it—for example by applying pressure or magnetic field or changing its chemical composition. CePd2Si2 is such an example, where the antiferromagnetic transition which occurs at about 10K under ambient pressure can be tuned to zero temperature by applying a pressure of 28,000 atmospheres. Less commonly a first-order transition can be made quantum critical. First-order transitions do not normally show critical fluctuations as the material moves discontinuously from one phase into another. However if the first order phase transition does not involve a change of symmetry then the phase diagram can contain a critical endpoint where the first-order phase transition terminates. Such an endpoint has a divergent susceptibility. The transition between the liquid and gas phases is an example of a first-order transition without a change of symmetry and the critical endpoint is characterized by critical fluctuations known as critical opalescence.

A quantum critical endpoint arises when a finite temperature critical point is tuned to zero temperature. One of the best studied examples occurs in the layered ruthenate metal, Sr3Ru2O7 in a magnetic field. This material shows metamagnetism with a low-temperature first-order metamagnetic transition where the magnetization jumps when a magnetic field is applied within the directions of the layers. The first-order jump terminates in a critical endpoint at about 1 kelvin. By switching the direction of the magnetic field so that it points almost perpendicular to the layers, the critical endpoint is tuned to zero temperature at a field of about 8 teslas. The resulting quantum critical fluctuations dominate the physical properties of this material at nonzero temperatures and way from the critical field. The resistivity shows a non-Fermi liquid response, the effective mass of the electron grows and the magnetothermal expansion of the material is modified all in response to the quantum critical fluctuations.

Read more about this topic:  Quantum Critical Point

Famous quotes containing the words quantum and/or critical:

    But how is one to make a scientist understand that there is something unalterably deranged about differential calculus, quantum theory, or the obscene and so inanely liturgical ordeals of the precession of the equinoxes.
    Antonin Artaud (1896–1948)

    If our entertainment culture seems debased and unsatisfying, the hope is that our children will create something of greater worth. But it is as if we expect them to create out of nothing, like God, for the encouragement of creativity is in the popular mind, opposed to instruction. There is little sense that creativity must grow out of tradition, even when it is critical of that tradition, and children are scarcely being given the materials on which their creativity could work
    C. John Sommerville (20th century)