Quantization Error - Quantization Noise Model

Quantization Noise Model

Quantization noise is a model of quantization error introduced by quantization in the analog-to-digital conversion (ADC) in telecommunication systems and signal processing. It is a rounding error between the analog input voltage to the ADC and the output digitized value. The noise is non-linear and signal-dependent. It can be modelled in several different ways.

In an ideal analog-to-digital converter, where the quantization error is uniformly distributed between −1/2 LSB and +1/2 LSB, and the signal has a uniform distribution covering all quantization levels, the Signal-to-quantization-noise ratio (SQNR) can be calculated from

Where Q is the number of quantization bits.

The most common test signals that fulfill this are full amplitude triangle waves and sawtooth waves.

For example, a 16-bit ADC has a maximum signal-to-noise ratio of 6.02 × 16 = 96.3 dB.

When the input signal is a full-amplitude sine wave the distribution of the signal is no longer uniform, and the corresponding equation is instead

Here, the quantization noise is once again assumed to be uniformly distributed. When the input signal has a high amplitude and a wide frequency spectrum this is the case. In this case a 16-bit ADC has a maximum signal-to-noise ratio of 98.09 dB. The 1.761 difference in signal-to-noise only occurs due to the signal being a full-scale sine wave instead of a triangle/sawtooth.

Quantization noise power can be derived from

where is the voltage of the level.

(Typical real-life values are worse than this theoretical minimum, due to the addition of dither to reduce the objectionable effects of quantization, and to imperfections of the ADC circuitry. On the other hand, specifications often use A-weighted measurements to hide the inaudible effects of noise shaping, which improves the measurement.)

For complex signals in high-resolution ADCs this is an accurate model. For low-resolution ADCs, low-level signals in high-resolution ADCs, and for simple waveforms the quantization noise is not uniformly distributed, making this model inaccurate. In these cases the quantization noise distribution is strongly affected by the exact amplitude of the signal.

The calculations above, however, assume a completely filled input channel. If this is not the case - if the input signal is small - the relative quantization distortion can be very large. To circumvent this issue, analog compressors and expanders can be used, but these introduce large amounts of distortion as well, especially if the compressor does not match the expander.

Read more about this topic:  Quantization Error

Famous quotes containing the words noise and/or model:

    It is as real
    as splinters stuck in your ear. The noise we steal
    is half a bell. And outside cars whisk by on the suburban street
    and are there and are true.
    What else is this, this intricate shape of air?
    calling me, calling you.
    Anne Sexton (1928–1974)

    ...that absolutely everything beloved and cherished of the bourgeoisie, the conservative, the cowardly, and the impotent—the State, family life, secular art and science—was consciously or unconsciously hostile to the religious idea, to the Church, whose innate tendency and permanent aim was the dissolution of all existing worldly orders, and the reconstitution of society after the model of the ideal, the communistic City of God.
    Thomas Mann (1875–1955)